Convection-enhanced drug delivery for gliomas

نویسندگان

  • Andrew T. Healy
  • Michael A. Vogelbaum
چکیده

In spite of aggressive multi-modality treatments, patients diagnosed with anaplastic astrocytoma and glioblastoma continue to display poor median survival. The success of our current conventional and targeted chemotherapies are largely hindered by systemic- and neurotoxicity, as well as poor central nervous system (CNS) penetration. Interstitial drug administration via convection-enhanced delivery (CED) is an alternative that potentially overcomes systemic toxicities and CNS delivery issues by directly bypassing the blood-brain barrier (BBB). This novel approach not only allows for directed administration, but also allows for newer, tumor-selective agents, which would normally be excluded from the CNS due to molecular size alone. To date, randomized trials of CED therapy have yet to definitely show survival advantage as compared with today's standard of care, however, early studies appear to have been limited by "first generation" delivery techniques. Taking into consideration lessons learned from early trials along with decades of research, newer CED technologies and therapeutic agents are emerging, which are reviewed herein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan.

BACKGROUND Convection-enhanced delivery of chemotherapeutics for the treatment of malignant glioma is a technique that delivers drugs directly into a tumor and the surrounding interstitium through continuous, low-grade positive-pressure infusion. This allows high local concentrations of drug while overcoming the limitations imposed by toxicity and the blood-brain barrier in systemic therapies t...

متن کامل

Convection-enhanced Delivery of Therapeutics for Malignant Gliomas

Convection-enhanced delivery (CED) circumvents the blood-brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distri...

متن کامل

Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas.

Convection enhanced delivery (CED) is potentially a powerful method to improvethe targeting of macromolecules to the central nervous system by applying a pressure gradient to establish bulk flow through the brain interstitium during infusion. The purpose of the present study was to evaluate CED as a means to improve the intracerebral and intratumoral (i.t.) uptake of a heavily boronated macromo...

متن کامل

Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment

Convection-enhanced delivery (CED) is a technique designed to deliver drugs directly into the brain or tumors. Its ability to bypass the blood-brain barrier (BBB), one of the major hurdles in delivering drugs to the brain, has made it a promising drug delivery method for the treatment of primary brain tumors. A number of clinical trials utilizing CED of various therapeutic agents have been cond...

متن کامل

Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression

Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015